

SCIENCE DIRECT®

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 251-254

Discovery of a novel, potent and selective human β_3 -adrenergic receptor agonist

Yutaka Nakajima,^{a,*} Hitoshi Hamashima,^a Ken-Ichi Washizuka,^a Yasuyo Tomishima,^a Hiroaki Ohtake,^a Emiko Imamura,^b Toshiko Miura,^b Hiroshi Kayakiri^a and Masayuki Kato^a

^aMedicinal Chemistry Research Laboratories, Fujisawa Pharmaceutical Co. Ltd, 1-6, Kashima 2-Chome, Yodogawa-Ku, Osaka 532-8514, Japan

Received 24 September 2004; revised 1 November 2004; accepted 1 November 2004 Available online 18 November 2004

Abstract—The discovery of a novel, potent and selective β_3 -adrenergic receptor (AR) agonist is described. SAR studies demonstrated the structural requirements for activity and selectivity. Compound 1c, which showed good β_3 -AR activity and selectivity, was identified and pharmacokinetics were investigated. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The β_3 -adrenergic receptor (AR), which is present on the surface of adipocytes, plays a significant role in mediating lipolysis in white adipocyte tissue and thermogenesis in brown adipocyte tissue.^{1,2} It has been reported that stimulation of β_3 -AR induces a variety of pharmacological effects such as increase of fat oxidation, enhancement of energy expenditure and improvement in insulin-mediated glucose uptake in rodent models and thus β_3 -AR agonists have been developed as therapeutic candidates for obesity and type II diabetes.³ Recent studies indicated that in addition to adipocytes, the β₃-AR is also distributed in gall bladder, gastrointestinal tract and prostate,4 therefore new therapeutic applications of β_3 -AR agonists in treatment of gastrointestinal and urinary disease have been studied. 5–7 Early β_3 agonists, which had been developed using rodent models showed insufficient effects in clinical trials due to weak agonistic activity for the human β_3 receptor in spite of high potency for rodent receptors.⁸ Thus, potent β₃-AR agonists against the human receptor are required. Furthermore, β_3 -AR selectivity over β_1 -AR and β_2 -AR is also important, because stimulation of β_1 -AR and

2. Design

Our design concept is outlined in Figure 1. We planned to introduce a hydroxymethyl group into the core

Figure 1. Design of β_3 agonists.

Keyword: β₃-Adrenergic receptor agonist.

^bMedicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd, 1-6, Kashima 2-Chome, Yodogawa-Ku, Osaka 532-8514, Japan

 $[\]beta_2\text{-}AR$ may induce severe side effects such as enhancement of heart rate and tracheal relaxation, respectively. In our laboratory and in others, the search for novel, potent human $\beta_3\text{-}AR$ agonists has been ongoing for a number of years. 9

^{*}Corresponding author. Tel.: +81 6 6390 1384; fax: +81 6 6304 5435; e-mail: yutaka_nakajima@po.fujisawa.co.jp

Box
$$NO_2$$
 A, b A_2 A_3 A_4 A_4 A_5 A_5

Scheme 1. Reagents: (a) NaBH₄, THF, MeOH; (b) HCl, dioxane; (c) **4**, EtOH; (d) Boc₂O, THF; (e) Fe, AcOH, EtOH, H₂O; (f) BSA, 1-methyl-2-pyrrolidinone; (g) R²–NCO, DIEA, 1-methyl-2-pyrrolidinone; (h) TFA or HCl.

scaffold (part B) to attempt to improve β_3 -AR selectivity, water solubility and pharmacokinetics. The left-wing (part A) represents the core pharmacophore of β_3 -AR agonists, an aminoethanol moiety. The right-wing (part C) is considered critical for β_3 -AR selectivity since isoproterenol is a non-selective β -AR agonist. We designed compounds 1 based on a urea scaffold to facilitate rapid synthesis and SAR evaluation. This paper describes these efforts and the discovery of a novel, potent analogue.

3. Synthesis

Our general synthetic approach to the compounds in this letter is illustrated in Scheme 1. Boc-protected *p*-nitrophenylalanine methyl ester 2 was reduced to the alcohol with NaBH₄. Removal of the Boc group under acidic conditions gave amine 3. The first point of diversity was introduced by coupling of 3 with various epoxides 4. The resulting amines 5 were protected as Boc and the nitro group was reduced to afford key amines 6. The second point of diversity was introduced by parallel coupling of 6 with a variety of isocyanates. For efficient urea formation, pretreatment of 6 with *N*,*O*-bis(trimethylsilyl)-acetamide (BSA) to protect the hydroxyl groups, addition of isocyanate and finally acidic deprotection of the silyl and Boc protecting groups afford the desired urea derivatives 1 in good yield.

4. Results and discussion

All compounds were evaluated for their ability to produce cAMP in Chinese hamster ovary (CHO) cell lines expressing cloned human $\beta_3\text{-}AR$. Selected compounds were also evaluated for human β_1 or $\beta_2\text{-}AR$ activity using a similar method.

We first aimed to determine whether a urea type structure would show potent β_3 -AR agonist activity, by introducing representative left-wing structures to evaluate potential. Table 1 shows these results. Using 3-chlorophenyl, carbazoloxymethyl and phenoxymethyl as representatives, it can be seen that urea compounds have moderate to potent activity (1a, 1b and 1c). In particular, the phenoxymethyl compound 1c displayed potent activity as compared to isoproterenol.

Table 1. Effect of conversion of left-wing part on β_3 -AR activity

Compd R Human
$$\beta_3$$
 EC₅₀ (nM)^a

1a 74

1b HN 22

1c 0.5

Isoproterenol 0.97

Next, we confirmed the importance of the hydroxymethyl group in the scaffold, as indicated in Table 2. Compound 1d the stereoisomer of 1c, showed a 26-fold decrease in β_3 -AR activity. The stereochemistry of the hydroxymethyl group contributed to enhancement of β_3 -AR activity. Compound **1e** with no substituent, was 3-fold less potent in β_3 -AR activity. Therefore, it is suggested that the hydroxymethyl group may interact with the β_3 -AR and the spatial configuration is important. Furthermore β_3 -AR selectivity over β_1 -AR of these compounds was evaluated. Compound 1c showed 40fold β_1/β_3 selectivity, whereas compound **1d** and **1e** resulted in more than 10-fold increase in β_1 -AR activity and decrease in β_1/β_3 selectivity. Interestingly, compound 1d and 1e showed β_1 -AR selectivity and nonselectivity, respectively. These results indicate that the presence and stereochemistry of the hydroxymethyl group enhanced the β_3 -AR selectivity as well as the β_3 -AR activity. In addition, compound 1c was investigated for β_2/β_3 selectivity and was shown to be inactive towards the β_2 -AR.

^a β₃-AR agonistic activity was assessed by measuring cAMP accumulation in CHO cell lines expressing cloned human β₃-AR.

Table 2. Effect of hydroxymethyl group on β_3 -AR activity and selectivity

Compd	R ¹	\mathbb{R}^2	Human β ₃ EC ₅₀ (nM) ^a	Human β ₁ EC ₅₀ (nM) ^a	β_1/β_3 Selectivity	Human β ₂ EC ₅₀ (nM) ^a	β_2/β_3 Selectivity
1c	CH ₂ OH	Н	0.5	20	40	>100	>200
1d	H	CH_2OH	13	3.0	0.2	NT	_
1e	H	H	1.6	3.6	2.3	NT	_
Isoproterenol			0.97	0.084	0.087	2.0	2.1

^a β-AR agonistic activity was assessed by measuring cAMP accumulation in CHO cell lines expressing cloned human β-ARs.

Table 3 shows the effect of modification of the right part. This moiety was expected to greatly affect the β₃-AR activity and selectivity. First, conversion of the terminal phenyl ring to an alkyl group was examined. For β_3 -AR activity, while a bulky group such as cyclohexyl group was effective to maintain activity, the alkyl substituted derivatives, 1f, 1g and 1h, were less potent than compound 1c. This suggested that, in addition to bulkiness, aromaticity in the right portion was significant for β_3 -AR activity. Next, we focused on introduction of substituents to the right terminal phenyl ring. The methoxy substituents, 1i, 1j and 1k, maintained β_3 -AR activity compared to lead compound 1c, but increased β_1 -AR activity and therefore lowered the β_1/β_3 selectivity of these compounds. While the position of the methoxy group affected β_1 -AR activity and the β_1/β_3 selectivity

Table 3. Effect of conversion of right-wing part on β_3 -AR activity and selectivity

Compd	R	Human β ₃ EC ₅₀ (nM) ^a	Human β ₁ EC ₅₀ (nM) ^a	β_1/β_3 Selectivity
1c	Ph	0.5	20	40
1f	c-Hex	2.1	15	7.1
1g	n-Pr	8.3	51	6.1
1h	i-Pr	4.9	27	5.5
1i	2-OMe-Ph	1.1	12	11
1j	3-OMe-Ph	0.8	4.0	5.0
1k	4-OMe-Ph	2.5	2.2	0.9
11	3-Carboxy-Ph	1.5	1.3	0.9
1m	3-NO ₂ -Ph	1.0	0.9	0.9

^a β-AR agonistic activity was assessed by measuring cAMP accumulation in CHO cell lines expressing cloned human β-ARs.

was increased in the order *ortho* > *meta* > *para* substituent, these analogues showed less than 10-fold β_1/β_3 selectivity. Introduction of carboxylic acid (11) and nitro group (1m) also resulted in an increase in β_1 -AR activity and a decrease in β_1/β_3 selectivity. The effect of substituents appeared to influence β_1/β_3 selectivity and the functional group on the right terminal phenyl ring was suggested to contribute to interaction with the β_1 -AR. The nonsubstituted phenyl analogue 1c was consequently judged to be the most potent and selective.

The most potent and selective analogue 1c was investigated in a pharmacokinetic (PK) study as shown in Table 4. Oral bioavailability of compound 1c was low in rats and moderate in dogs (F = 1.1% and 20.3%, respectively). Values of clearance significantly differed in rats and dogs. These results would be attributed to species difference in metabolic stability. In dogs, however, compound 1c showed high AUC and long half-life, indicating long duration of action.

5. Summary

In summary, we have discovered a number of novel and potent β_3 -AR agonists. A SAR study revealed that the hydroxymethyl and phenylurea groups were important for β_3 -AR activity and selectivity. Compound 1c was identified as the most potent and selective in this series of β_3 -AR agonists. In a PK study, compound 1c showed prolonged plasma concentration and reasonable oral bioavailability in dogs.

Acknowledgements

The authors would like to acknowledge Dr. David Barrett for helpful discussions and critical reading of this manuscript.

Table 4. Pharmacokinetic parameters of 1c after po and iv administration to rats and dogs

	po ^a			iv ^a			F (%)
	Dose (mg/kg)	C _{max} (ng/mL)	AUC ₀₋₂₄ (ngh/mL)	Dose (mg/kg)	t _{1/2} (h)	CL _{tot} (mL/min/kg)	
Rat	3.2	4.2	4.2	1.0	1.3	141.8	1.1
Dog	1.0	52.6	140.1	0.32	8.1	24.2	20.3

 $^{^{}a} n = 3.$

References and notes

- Arch, J. R. S.; Ainsworth, A. T.; Cawthorne, M. A.; Piercy, V.; Sennitt, M. V.; Thody, V. E.; Wilson, C.; Wilson, S. *Nature* 1984, 309, 163.
- Emorine, L. J.; Marullo, S.; Briend-Sutren, M.-M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A. D. Science 1989, 245, 1118.
- For recent reviews, see: (a) Hu, B.; Jennings, L. L. Prog. Med. Chem. 2003, 41, 167; (b) de Souza, C. J.; Burkey, B. F. Curr. Pharm. Des. 2001, 7, 1433; (c) Weyer, C.; de Souza, C. J. Drug Dev. Res. 2000, 51, 80.
- Strosberg, A. D. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 421.
- Rathi, S.; Kazerounian, S.; Banwait, K.; Schulz, S.; Waldman, S. A.; Rattan, S. J. *Pharmacol. Exp. Ther.* 2003, 305, 615.
- Bardou, M.; Dousset, B.; Deneux-Tharaux, C.; Smadja, C.; Naline, E.; Chaput, J.-C.; Naveau, S.; Manara, L.; Croci, T.; Advenier, C. Eur. J. Pharmacol. 1998, 353, 281.
- Igawa, Y.; Yamazaki, Y.; Takeda, H.; Hayakawa, K.; Akahane, M.; Ajisawa, Y.; Yoneyama, T.; Nishizawa, O.; Andersson, K.-E. Br. J. Pharmacol. 1999, 126, 819.

- 8. Weyer, C.; Tataranni, P. A.; Snitker, S.; Danforth, E., Jr.; Ravussin, E. *Diabetes* **1998**, 47, 1555.
- 9. For recent studies, see: (a) Harada, H.; Hirokawa, Y.; Suzuki, K.; Hiyama, Y.; Oue, M.; Kawashima, H.; Yoshida, N.; Furutani, Y.; Kato, S. Bioorg. Med. Chem. Lett. 2003, 13, 1301; (b) Tanaka, N.; Tamai, T.; Mukaiyama, H.; Hirabayashi, A.; Muranaka, H.; Ishikawa, T.; Kobayashi, J.; Akahane, S.; Akahane, M. J. Med. Chem. 2003, 46, 105; (c) Uehling, D. E.; Donaldson, K. H.; Deaton, D. N.; Hyman, C. E.; Sugg, E. E.; Barrett, D. G.; Hughes, R. G.; Reitter, B.; Adkison, K. K.; Lancaster, M. E.; Lee, F.; Hart, R.; Paulik, M. A.; Sherman, B. W.; True, T.; Cowan, C. J. Med. Chem. 2002, 45, 567; (d) Hu, B.; Ellingboe, J.; Han, S.; Largis, E.; Mulvey, R.; Oliphant, A.; Sum, F.-W.; Tillett, J. J. Med. Chem. 2001, 44, 1456; (e) Mathvink, R. J.; Tolman, J. S.; Chitty, D.; Candelore, M. R.; Cascieri, M. A., Jr.; Colwell, L. F., Jr.; Deng, L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Miller, R. R.; Stearns, R. A.; Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. J. Med. Chem. 2000, 43, 3832.